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ABSTRACT

Methods of finding density functions for statistics often lead to intractable mathematical expressions but the calculations are
relatively simple and a good deal of work has been done using the basic assumption of normality. The most popular tests among
practical Statisticians are tests which depend on normality in the parent population. When there is grave doubt about the
assumption, non-parametric tests should be used, even at some sacrifice of power. Parametric tests like τ-test, t-test and F-test
are applied under the assumption that the data are normally distributed. One should test the data whether they follow normal
or not before conducting the parametric tests. If there is reason to suspect non-normality, it is advisable to try a transformation.
In this work different methods for testing the normality are discussed and eight data sets are taken and they are tested for
normality. The data sets 2 and 5 are found normal. The other data sets i.e.3,4 and 6 are non-normal. The bivariate data set
7 is normal where as bivariate data set-8 is non-normal. Box-Cox- power transformation is used for all non-normal data and
it is found that all the transformed data follow normality. But it is not necessary that the Box-Cox-power transformation will
always makes the data normal.

Keywords : Bivariate data, Box-Cox transformation, Box-Whisker plots, Shapiro and Wilk test, goodness of
fit Jarque – Bera (JB) test

One of the earliest applications in the history of the
normal distribution was provided by Laplace and Guass
(1968) to describe the measurement error in the
observation of the motions of planets. Since then, the
normal distribution is usually applied in the
measurement error assumption. Thus, the normal
distribution is called “Law of Errors” by some scientists.
Quetelet (1796-1874) used it to describe physiological
and behavioral phenomena and Galton in the early
1900’s, used it to describe anthropometric
measurements. Until now, the normal distribution is the
most widely used probability distribution based on three
main reasons. The first reason is the mathematical
properties of the normal distribution. The second reason
is that many scientists have noted that random variables
often have normal or approximately normal
distributions. The third reason is the central limit
theorem. The logarithm of the variate or the square root
or the inverse sine may be more nearly normal (Bartlett,
1947).

Statistical inference procedures have been
systematically developed under the assumption of
normality; in addition, in a large number of applications,
the normal mode1 is fitted, at least approximately, to
underlying situations based on the consequence of the
central limit theorem. It is therefore important to devise
tests for normality or to have methods for verifying the
reasonableness of the normality assumption. Thus

normal distribution plays a very important role in
statistical theory. Normal distribution has got the
tremendous importance in the theory and application
of statistics (Sahu, 2010). Most the distribution can be
brought under the normal distribution such as normal
distribution is a limiting case of Poisson distribution
with the parameter (Sahu, 2010). Similarly,
normal distribution can also be obtained as a limiting
case of Binomial distribution when and neither
p nor q is very small (Sahu, 2010).

It is very essential to judge the data before any
analysis whether the data follow normal distribution or
not. If the data do not follow normal distribution, then
there are some remedial measures for converting the
data to be normalized. Even if a variable is not normally
distributed, it can sometimes be brought to normal form
by simple transformation of variable. For example, if
the distribution of X is skewed, the distribution of 
might come out to be normal. The entire theory of small
sample tests, viz., t, F, x2 tests, etc., is based on the
fundamental assumption that the parent populations
from which the samples have been drawn follow normal
distribution.The normal distribution is easy to work with
mathematically. In many practical cases, the methods
developed using normal theory work quite well even
when the distribution is not normal. Box-Cox (1964)
power transformations are used for non-normal data.
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MATERIALS AND METHODS
The following data sets are considered for testing

the normality. The feature and sources of the collected
data sets are given below.

1. The information about number of pod per plant
for 12 plants (n=12):
Source:  Jaguli farm, BCKV

2. The height of 12 students (in inches) from New
PG hostel (n=12):
Source: students are selected from New PG
hostel in BCKV.

3. The information about the number of leaves in a
shoot of wood apple plant for 27 plants (n=27):
Source: Jaguli farm, BCKV.

4. The information about forest cover 2009 as
revised (forest cover reported in ISFR 2009 +
Interpretational changes) in km2 (n=35):
Source: Report of Forest Survey of India 2009.

5. The information about the number of aphids per
three leaves(n=49):
Source: Jaguli farm, BCKV.

6. The information about the rainfall distribution
from 1901 to 2002 in Kolkata district (n=102):
Source: www.india water portal.org.

7. The information about organic carbon
(g kg-1) 1( )x  and CEC[c mole (p)+ kg-1] 2( )x for
soil samples (n=30) :
Source:  Journal of the Indian Society of Soil
Science, Vol. 59, No. 2, pp 125-133 (2011).

8. The information about available Phosphorus (mg
kg-1) 1( )x  and Nitrogen (kg ha-1) 2( )x  content in soil
samples (n=66) :

Source:  Journal of the Indian Society of Soil
Science, Vol. 59, No. 2, pp 125-133 (2011)

The data set 1 to 6 are univariate but the last two
sets (i.e. 7 & 8) are bivariate and n represents the number
of observations for a particular data sets.

For applying parametric test one need the
assumption that the data are normally distributed.
Assumption of normality can be tested by various
graphical methods like- histogram, box-whisker plot,
normal probability plots and statistical test like – chi-
square, Anderson-Darling, Kolmogorov-Smirnov tests
etc. None of the methods, however, is absolutely
definite.In this article some tests for normality, like-Box-

plot, Q-Q plot, W-test, Jarque- Bera (JB) test,  test
for goodness of fit for univariate data are discussed.

Methods of judging normality in data

Chi-square plot for bivariate data
If the observations were generated from a

multivariate normal distribution, each bivariate
distribution would be normal and the contours of
constant density would be ellipses. We know that for

the bivariate normal distribution 

follows distribution with 2 d.f. Moreover, the set of

bivariate outcomes  such that

 has probability 0.5. Thus

we should expect roughly 50 per cent of sample
observations to lie in the ellipse

where we have replaced

by it’s estimate  and by its estimate S–1. If it

does not hold the normality assumption is suspect. A
formal method for judging the joint normality of a data
set is based on the square generalized distances

, j = 1, 2,……., n. where

 are the sample observations. To
construct the chi-square plot we order the squared
distances from smallest to largest as 

and graph the pairs , where

 is the 

percentile of the chi-square distribution with p d.f. The
plot should resemble a straight line. A systematic curved
pattern suggests lack of normality.
Transformation of data for normality

When a variable does not conform to the assumption
of normality, but the data analysis method requires the
data to come from a normal distribution, then it is
advisable to try a transformation. The logarithm of the
variate or the square root or the inverse sine or the
reciprocal of the variate, may be more nearly normal.If
normality is not a viable assumption, one alternative is
to ignore the findings of a normality check and proceed
as if the data were normally distributed. This practice
is not recommended since, in many instance, it could
lead to incorrect conclusions. A second alternative is to
make non-normal data more “normal looking” by
considering transformations of the data. Normal theory
analyses can then be carried out with the suitably
transformed data.In many instances the choice of
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Table 1:Descriptive statistics for 6 univariate data sets

Data set Mean Min Max Range St.dev Q1 Q2 Q3 IQR

no. ( ) (R) (S)

1 48.8 10 151 141 52.2 18 24 89.5 1.96 3.19 1.40 0.19 71.5
2 67.667 63 72 9 3.284 64.25 67.5 70.750 0 1.38 0.00 -1.62 6.5
3 10.444 6 25 19 3.662 8 10 11 6.76 12.22 2.60 9.22 3
4 19211 6 77700 77694 20534 2212 14620 24459 1.7956 4.18 1.34 1.18 22247
5 42.49 33.080 54.090 21.010 5.391 38.890 41.995 46.295 0.0169 2.58 0.13 -0.42 7.405
6 435.8 229.8 892.1 662.4 122.7 345.5 229.8 492.9 1.4884 5.12 1.22 2.12 147.4

Data set-1 Data set-2

Data set-3 Data set-4

Data set-5 Data set-6

Fig.1. Box-Whisker plots for six univariate data

Das et al.
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Data set-5 ( 0.989507) Data set-6  ( 0.95978)

Data set-3 ( 0.8567)

Data set-4 ( 0.9158)

Data set-3 ( 0.82623) Data set-2 ( 0.96628)

Fig. 2 : Q-Q Plots and the correlation coefficients for the Q-Q plots for six univariate data.

Methods of judging normality in data
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transformation to improve the approximation to
normality is not obvious. For such cases it is convenient
to let the data suggest a transformation. A useful family
of transformation for this purpose is the family of power
transformation.
Power transformation

For detailed theory on power transformation any
standard book may be followed.

RESULTS AND DICUSSIONS
The descriptive statistics of First 6 univariate (data

sets) are calculated and presented in the table 1. A
common rule – of- thumb for test of normality is to run
descriptive statistics to get skewness and kurtosis, and
then divide these by the standard errors. Skewnsee
should be within the range +2 to -2 (some authors used
+1 to -1 as a more stringent criterion when normality is
critical) and kurtosis within the range +2 to -2. A few
authors use the more lenient +3 to -3 where other authors
use +1 to -1 as a more stringent criterion (Garson, 2012).
Using the thumb rule, it appears from table 1 that two
of the data sets follow normal distribution having
skewness in the range 0.00 to 0.13. The other data sets
i.e. data sets 1, 4 & 6 were skewed to the right with
skewness value ranging from 1.2 to 1.40 except for data
set 3 where both skewness and kurtosis were higher. So
it can be conclude that the data set 2 and 5 are normal.

Box-Whisker plots
From the Box-Whisker graphs (Fig. 1) it has been

observed that only in case of data set-2 and data set-5,
the distance between median to first-quartile and median
to third-quartile are nearly same and also the distance
between median to lower value and median to upper
value are also same. So we can conclude that, these two
data sets are normal. Other data sets don’t follow the
above criteria. Hence we can conclude that, other data
sets (i.e. data sets 1, 3, 4 & 6) are not normal.

Any observation falling beyond

 is identified as a
suspect outlier and any value falling

outside  is known as a
extreme outlier. It is also observed that outliers are
observed in data set 1, 3, 4 and 6. If outliers are identified,
they should be examined very carefully. Depending upon
the nature of outlier and the objectives of the

investigation, outliers may be deleted or appropriately
weighted in a subsequent analysis.
Q-Q Plots

Q-Q Plots and the correlation coefficients for the Q-
Q plots are presented in figure 2 for the above mentioned
six univariate data sets.

The Q-Q plot for the data set-1, which is a plot of
the ordered data x(j) against the normal quantiles q(j), is
shown in fig. 2. The pairs (q(j), x(j)) do not lie in a straight
line. It appears from the fig. 2 that the data as a whole
are not normally distributed. The straightness of the
Q-Q plot can also be measured by calculating the
correlation coefficient of the points in the plot. We have

0.82623. For n=12 and α = 0.05 the table value of

 0.92744. Since  0.82623 < 0.92744, we can
reject the hypothesis of normality. The Q-Q plot for the
data set-2, lies nearly straight line and it appears in the
fig. 2 for data set 2. So, we can conclude that it is normal.
The correlation coefficient value is also greater then table
value. So, we can also conclude that the data follow
normal distribution. Similarly from the fig. 1 for data
set 5, the pairs of points (q(j), x(j)) lie very nearly along a
straight line and we would not reject the notion that the

data set-5 is normally distributed. Also  0.989507
> 0.97642 which is the critical point for the Q-Q plot
correlation coefficient test for normality for n = 49 and
α = 0.05. It is also observed from the fig. 1 for the data
sets 3, 4, 6 that the pairs of points (q(j), x(j)) do not lie
along a straight line and we reject the normality
assumption for the data sets 3,4 and 6. Here also the

calculated values of  are less than table values for
α = 0.05 and corresponding values of n. Thus the
hypothesis of normality is rejected.
Shapiro and Wilk (W-test) test for normality

In case of dataset 1, the tabulated value of W-test for
normality for n =12 and alfa = 0.05 is 0.859 which is
greater than the calculated value of W i.e. 0.6794. So it
can conclude that the hypothesis of normality is
rejected.Similarly the values of W-test statistics for data
sets 2 to 5 are given in table 2.

Comparing the calculated values of W with table
values of W at 5 per cent level it is shown that data sets
2 and 5 are normal and data sets 3 and 4 are non-normal.
Since the sample sizes for the data sets 6 is 102, W-test

Table 2: W-test statistics for data sets 2 to 5.
Data set-2 Data set-3 Data set-4 Data set-5

W-statistic 0.9196 0.754 0.836 0.974
Critical value 0.859 0.923 0.934 0.947

Das et al.
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Table 3:  test for goodness of fit for data set 6.

C.I(m) f x(upper Probability e =np

class = Expected
boundary) (p) frrequency

200-275 5 275 -1.274 0.102 0.102 10.408 2.402
275-350 21 350 -0.667 0.255 0.153 15.564 28.33
350-425 28 425 -0.060 0.480 0.225 22.994 34.09
425-500 26 500 0.548 0.705 0.225 22.985 29.41
500-575 13 575 1.155 0.875 0.170 17.292 9.773
575-650 3 650 1.762 0.961 0.086 8.759 1.028
650-725 2 725 2.370 0.991 0.030 3.067 1.304
725-800 2 800 2.977 0.999 0.008 0.780 5.127
800-875 1 875 3.585 1.000 0.001 0.135 7.406
875-900 1 900 3.787 1.000 0.0002 0.017 59.31

1.000 102 110.36

is not applied. We know that W-test can be effective
when the sample size is small.
Jarque – Bera (JB) test of normality

The JB test of normality is an asymptotic or large
sample test. We can apply this test on only data sets 6.

The test statistic under, H0  : β1 = 0, β2 = 3, is given by

Table 4: Values of  for the data set 7.

Obs. x1j x2j Obs. x1j x2j

1 17.2 4.4 4.932 16 9.1 2.8 1.163
2 13.5 4.2 1.182 17 7.9 2.6 2.273
3 12.3 3.4 0.187 18 7.3 4.8 3.845
4 10.8 4 0.299 19 13.7 5.3 4.871
5 8.8 3.7 0.619 20 12.3 3.3 0.243
6 6.2 4.5 3.972 21 9.72 2 3.433
7 15.7 3 2.754 22 9.42 2.5 1.765
8 13.7 2.5 2.285 23 8.82 4.7 2.462
9 10.8 3.7 0.045 24 7.98 4.7 2.976
10 10.5 3.5 0.042 25 17.5 3.1 4.775
11 9.2 2.2 2.817 26 13.5 3.9 0.78
12 7.1 2.2 4.105 27 11.7 4.2 0.622
13 15.7 3.6 2.293 28 10.8 3.3 0.09
14 13.7 3.4 0.768 29 9.72 3.5 0.21
15 10.8 3.1 0.277 30 7.68 4.2 1.915

Using table 1 the calculated test statistic for Jarque
– Bera (JB) is 44.24. The table value of  at 5 per
cent level of significance with 2 d.f. is 5.991. Since the
JB values are greater than 5.991, we reject H0. So it can
be conclude that the observations in the data set 6 are
not normally distributed.

 test for goodness of fit
This test is applicable only when sample size is large.

At first we can construct the grouped frequency
distribution tables for the data sets 6. Remembering that
in fitting the normal distribution, two parameters has to
be estimated from the sample. It is found from the table

Methods of judging normality in data
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Table 5: Values of  for the data set 8.

Obs. x1j x2j Obs. x1j x2j

1 37.6 98.5 3.301 34 5.11 178 1.302
2 26 190.9 1.348 35 4.41 129 0.294
3 16.4 104.7 0.328 36 3.25 70.8 1.17
4 12.3 67.7 1.3 37 7.68 231 3.956
5 4.8 46.2 2.179 38 4.46 178 1.367
6 3.2 43.1 2.357 39 2.68 157 0.875
7 47.4 36.9 9.969 40 2.14 144 0.651
8 23.3 73.9 1.912 41 1.61 117 0.477
9 10 126 0.035 42 0.89 104 0.599
10 8.9 30.8 3.138 43 8.39 237 4.319
11 6.9 24.6 3.483 44 2.86 157 0.857
12 5.1 21.5 3.656 45 2.5 126 0.422
13 59.4 240 8.985 46 2.14 113 0.445
14 55.6 227 7.425 47 2.14 104 0.508
15 53.9 163 6.044 48 2.68 77 1
16 52.4 157 5.649 49 2.78 184 1.803
17 39.8 144 2.645 50 2.32 175 1.489
18 38.9 123 2.81 51 2.09 150 0.771
19 15 181 0.818 52 1.86 129 0.494
20 6.25 166 0.796 53 2.78 117 0.387
21 2.68 150 0.712 54 18.57 101 0.527
22 2.5 126 0.422 55 9.05 181 1.086
23 2.5 104 0.483 56 5.8 175 1.126
24 2.32 95.4 0.608 57 4.87 166 0.914
25 49.4 209 5.305 58 4.87 135 0.305
26 31.2 181 1.519 59 3.5 117 0.336
27 11.9 117 0.055 60 3 55.4 1.771
28 17.4 64.6 1.746 61 4.87 209 2.841
29 4.64 55.4 1.738 62 4.64 175 1.236
30 1.79 43.1 2.388 63 4.41 150 0.556
31 56.1 227 7.561 64 4.18 113 0.309
32 10.91 187 1.2 65 4.18 86.2 0.696
33 7.66 181 1.189 66 3.95 55.4 1.75

Das et al.

Fig. 3. The chi-square plot of the pairs for the data set
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3 that the last 5 class intervals of the variable have been
amalgamated to form only one interval. Thus, the
calculated  test statistic is 8.3663 with 3 d.f. which

is greater than tabulated  . Hence the null
hypothesis is rejected. So we can conclude that the data
has not come from a normal population.
Normality test for bivariate data

The data sets 7 and 8 are bivariate. The tabulated χ2
value at 5 per cent level of significance and 2 d.f. is
1.39. Any observation satisfying the condition

is on or inside the estimated 50 per cent

contour. Otherwise the observation is outside the contour.
It is observed from the table 4 that 14 generalized

distances ( ) are less than 1.39 i.e. a proportion 46.67

per cent of the data falls within the 50 per cent contour.
If these observation are normally distributed we would
expected 50 per cent of the observations to be within
this contour. So the deviation is not too much. Hence we
can conclude that the bivariate data has come from a
bivariate normal population.

To draw a chi-square plot at first the squared
distances are ordered from smallest to largest and graph

the pairs where is the

100(j-0.5)/n percentile of the chi-square distribution
with 2 d.f.

From the figure 3 it can be concluded that the plot is
not very straight. However it is difficult to reach a definite
conclusion by chi-square plot.

In case of dataset 8, It is observed (Table 5) that 39

generalized distances ( ) are less than 1.39 i.e. a

proportion 59.09 per cent of the data falls within the 50
per cent contour. If these observation are normally
distributed we would expect 50 per cent of the
observations to be within this contour. Here the deviation
prevails i.e.the bivariate data has not come from a
bivariate normal population.

To draw a chi-square plot at first the squared
distances are ordered from smallest to largest and graph

the pairs  where is the

100(j-0.5)/n percentile of the chi-square distribution with
2 d.f. The ordered distances and the corresponding chi-
square percentiles for 2 d.f. and n=66 are given in figure
4.

Since from figure 4 it is found that the Chi-square
plot is not very straight, the data do not appear to be
bivariate normal.

Transformation of data and Test for Normality
From the above test it has been found that some data

sets i.e. data set 1,3,4,6 & 8 are non-normal. In this
section first we use Box-Cox transformation to the
observation for data sets-1, 3, 4, 6 and 8. Then the
transformed data are cheeked for normality. Since all
the observation are positive, let us performed a power
transformation of the data which will produce result that
are more nearly normal. We restrict our attention to the
family of power transformation. We find that value of  λ
which maximizes the function l (λ) .Using Statistica
software we obtain the value of λ which maximizes  for
data sets 1,3,4 and 6, which are given in table 6.

Since for data set 1,  value in Q-Q PLOT is
0.961914 which is greater than table value at 5 per cent
level of significance indicates the acceptance of the
hypothesis of normality. For Data set -3 the calculated
Shapiro-Wilk (W) value is 0.950675 which is greater

Methods of judging normality in data

Fig.4. The chi-square plotsof the pairs for the data set 8.
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Table 6: Value of λ λ λ λ λ which maximizes l (λλλλλ) for data sets 1,3, 4, 6 and 8.
Parameter Data set  1 Data set 3 Data set 4 Data set 6 data sets 8

X1         X2

λ -0.60 -0.43 0.37 -0.31 0.89

Table 7: Values of  for transformed data set 8.

Obs. y1 y2 Obs. y1 y2

1 2.181 66.8 2.925 34 1.281 114.208 0.824
2 2.054 121.659 2.075 35 1.19 85.341 0.084
3 1.873 70.613 1.269 36 0.988 49.426 1.228
4 1.746 47.441 2.19 37 1.512 144.498 2.98
5 1.243 33.379 2.31 38 1.197 114.208 0.951
6 0.977 31.301 2.525 39 0.85 101.955 1.286
7 2.254 27.095 7.076 40 0.678 94.284 1.693
8 2.013 51.402 3.04 41 0.443 78.108 2.518
9 1.647 83.54 0.296 42 -0.119 70.183 6.534
10 1.589 22.883 4.086 43 1.559 147.878 3.312
11 1.454 18.51 4.232 44 0.897 101.955 1.119
12 1.28 16.282 4.167 45 0.798 83.54 0.96
13 2.32 149.564 5.033 46 0.678 75.68 1.364
14 2.301 142.24 4.339 47 0.678 70.183 1.385
15 2.292 105.472 2.683 48 0.85 53.369 1.291
16 2.284 101.955 2.61 49 0.877 117.68 2.086
17 2.199 94.284 2.166 50 0.741 112.467 2.312
18 2.192 81.734 2.353 51 0.659 97.833 1.916
19 1.835 115.946 1.191 52 0.565 85.341 1.988
20 1.399 107.226 0.412 53 0.877 78.108 0.678
21 0.85 97.833 1.121 54 1.924 68.34 1.569
22 0.798 83.54 0.96 55 1.598 115.946 0.835
23 0.798 70.183 0.962 56 1.356 112.467 0.662
24 0.741 64.884 1.233 57 1.252 107.226 0.525
25 2.266 132.025 3.485 58 1.252 88.93 0.054
26 2.118 115.946 2.09 59 1.039 78.108 0.3
27 1.731 78.108 0.579 60 0.932 39.466 1.934
28 1.897 45.447 2.97 61 1.252 132.025 2.125
29 1.222 39.466 1.782 62 1.222 112.467 0.815
30 0.533 31.301 3.574 63 1.19 97.833 0.281
31 2.304 142.24 4.351 64 1.156 75.68 0.155
32 1.69 119.412 1.101 65 1.156 59.159 0.599
33 1.511 115.946 0.795 66 1.119 39.466 1.774

than table value of W at 5 per cent level of significance.
So, the hypothesis of normality can be accepted.

at 5% level of significance reveals the acceptance of
the hypothesis of normality. JB test statistics value
(0.02958) for data set 6 also conclude that the data has
come from the normal population. Since the data set 8 is
not bivariate normal, we select appropriate
transformation for the marginal distribution than for the

joint distribution. The values of  λ which maximizes l (λ)
for x1 and x2 are given in table 7.

The tabulated χ2 value at 5 per cent level of
significance and 2 degrees of freedom is found 1.39.

For any observation if generalized distances ( ) are
less than 1.39 is consider to be inside or on the estimated
50 per cent contour, otherwise the observation is outside

Das et al.
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the contour.It is observed from the Table 7 that 31

generalized distances ( ) are less than 1.39 i.e. a
proportion 46.97 per cent of the data falls within the 50
per cent contour. If these observations are normally
distributed one should expect 50 per cent of the
observations to be within this contour. So in this case
the deviation is not too much. Hence it can conclude
that the bivariate data has come from a bivariate normal
population. In case of Data set 4 the calculated w value
from W-test is 0.9513 which is greater than the tabulated
value (0.934)

The following observations are made on the basis of
empirical studies:

It is observed from the Box-Whisker plot for data
set 1, the distances from median to first quartile and
median to third quartile are not same. So, the data set-1
is not normal. But it also reveals from fig. 2 that the
Q-Q plot do not lie in a straight line and the value of 

i.e. 0.82623 which is less than the table value of  at 5
per cent level. So the data set 1 is not normal. Shapiro
and Wilk W-test also reveals that the data set 1 is not
normal. Box-Cox transformation is used for this data
and  value is calculated. The calculated  value
(0.961) is found much greater than the table value of  at
5 per cent level indicates the normality of data. So it can
be conclude that the Box-Cox transformation can be used
to make the data normal.The calculated value of  for

data set 2 and 5 are much greater than table value of 
at 5 per cent level indicates the normality of data. It is
also justified by Shapiro and Wilk W-test. The value 
and W-test statistic for dataset 3 and 4 shows that data
are non-normal. Since, data sets 6 are large samples the

JB test and  test for goodness of fit were used to test
the normality and found that the data sets are non-normal.
For data set 7, almost 47 per cent of the observations is
on or inside the estimated 50 per cent contour but for
data set-8, nearly 59  per cent of the data falls within the
50  per cent contour. So, it can be  concluded that data
set 7 is nearly normal, but the data set 8 is not normal.

This result also reveals from  plots. Finally it can be
summarized that the data sets 2 and 5 are normal. The
other data sets 3, 4 and 6 are non-normal. The bivariate
data set 7 is normal whereas bivariate data set-8 is non-
normal. Box-Cox- power transformation is used for all
non-normal data and it is found that all the transformed
data follow normality.But it is not necessary that theBox-
Cox- power transformation will always makes the data
normal.
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