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Genomic selection (GS), a new improved variant of
marker-assisted selection (MAS) for breeding of
livestock and crop species, has been used globally for
increasing agricultural production and productivity. GS
was first introduced by Meuwissen et al. (2001). High
density markers covering whole genome were used to
estimate the Genomic Estimated Breeding Values
(GEBV) in GS. Thousands of Single Nucleotide
Polymorphisms (SNPs) are chosen to represent the
whole genome by assuming that there must be at least
one SNP in close proximity to the particular gene or
QTL which is in linkage disequilibrium with this
particular gene or QTL of interest. Individual searching
for significant QTL–marker loci associations is not
required in GS. Instead, GS considers simultaneously
all the markers as predictor variables.The primary
advantage of GS is it can accelerate breeding cycles so
that the rate of annual genetic gain in terms of time and
cost can be enhanced as GS can be implemented in very
early life of an individual. Furthermore, it can be
extended to any trait as long as the record of reference
population for that trait is present. The implementation
of GS is beneficial for plants, although earlier it has
been applied mainly for animals, especially for dairy
cattle. There are several evidences of the increase in
accuracy of selection for crop species, like wheat
(Triticumaestivum) (Daetwyler et al., 2014), maize
(Zea mays) (Zhao et al., 2012), rice hybrids (Oryza
sativa L.) (Xu et al., 2014), barley (Hordeum vulgare)
(Lorenz et al., 2012) etc. Many statistical models are

available in literature for GS, such as Best Linear
Unbiased Prediction (BLUP) (Henderson, 1975), Least
Absolute Shrinkage and Selection Operator (LASSO)
(Tibshirani, 1996), ridge regression (Hoerl and Kennard,
1970), Linear Least Squared Regression(Meuwissen et
al., 2001), Sparse Additive Models (SpAM) (Ravikumar
et al., 2009), HSIC LASSO(Gretton et al., 2005 and
Yamada et al., 2014), Bayes A, Bayes B (Meuwissen et
al., 2001) etc. Most of them are used to capture additive
genetic effects. However, some models are also
available which can be used for modeling non-additive
genetic effects i.e. epistasis.

Recent advances in genotyping technology have
facilitated the availability of high density genotyping
data, which makes it easy to implement genomic
selection in breeding. But missing genotype is quite
common in genomic data. There are possibilities to
underestimate GEBV due to these missing genotypes.
To avoid such situations, we need to impute the missing
genotypes. Several types of imputation methods are
available for genotype imputation.Burdick et al. (2006)
extended the idea of imputation of missing genotypes
through computational analyses. Burdick was the first
to coin the term “in silico genotyping” to explain the
idea that genotype imputation could be performed
through computational analyses by replacing laboratory
based procedures.For related individuals, family
members share long stretches of haplotype that are
identical-by-descent. In such cases, imputation of
missing genotypes can be performed by considering the

Email : sayanti23gm@gmail.com

Journal of Crop and Weed, 16(1): 133-137 (2020) ISSN- O : 2349 9400 ; P : 0974 6315

h t tp : / / cwssbckv.o rg
www.cropandweed.com

Effect of genotype imputation on integrated model for genomic selection
S. GUHA MAJUMDAR, D. C. MISHRA  AND A. RAI

Centre for Agricultural Bioinformatics,
ICAR-IASRI, New Delhi-110012

Received : 26.11.2019 ; Revised : 16.03.2020 ; Accepted : 29.03.2020

DOI : 10.22271/09746315.2020.v16.i1.1283

ABSTRACT

Genomic selection is a very recent area of study in case of molecular breeding of livestock or crop species. There are various
statistical models available for genomic selection. The performances of these models depend on several factors like sampling
population, genetic architecture of target species, statistical models as well as missing genotypes. Missing genotype is very
common problem in high throughput sequencing data. These missing genotypes are necessary to be imputed in order to implement
the genomic selection models. Different statistical models of genomic selection behave differently in imputed data. So, it is
highly imperative to evaluate the performances of statistical models under different levels of imputations to know the behavior
of the models. In this article, performance of three statistical models viz. Sparse Additive Models (SpAM), Hilbert-Schmidt
Independence Criterion Least Absolute Shrinkage and Selection Operator (HSIC LASSO) and Integrated Model for genomic
selection are compared after incorporating the various degree of imputation (0, 2, 5 and 10%) in the real data. Results indicate
that integrated model is found to be more robust against the level of imputation of the genotypic data.
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distribution of potential genotypes of each individual
jointly with that of other individuals in the same pedigree.
For unrelated individuals, the haplotypes of the
individuals over short regions of sequence will be related
to each other by being identical by descent (IBD).
Imputation can be performed by identifying the similarity
between the haplotypes of the study individuals and the
haplotypes in the reference population. Then this sharing
is used to impute the missing alleles in individuals under
study (Marchini and Howie, 2010). Genotype imputation
can be performed in silico with packages such
asMENDEL (Lange et al., 2005) and MERLIN
(Abecasis et al., 2002). The Lander-Green (Lander et
al., 1987) or Elston-Stewart (Elston et al., 1971)
algorithms are used to implement these computational
tools. Some tools are also based on Monte Carlo
sampling (Heath, 1997). There are various imputation
tools to analyse genotype imputation. These tools include
IMPUTE (Marchini et al., 2007), MaCH (Li et al., 2010)
and fastPHASE/BIMBAM (Scheet et al., 2006, Servin
et al., 2007), TUNA (Nicolae et al., 2006), BEAGLE
(Browning et al., 2018), PLINK (Purcell et al., 2007)
and WHAP (Zaitlen et al., 2007) etc. Performance of
different statistical models of GS may be affected due to
extent of the imputation on missing genotypic data.
Therefore, there is a need to evaluate the performance
of the GS models at different level of imputation of the
genotypic data.Chen et al. in 2014 have compared the
performance of GBLUP and Bayesian methods for
genomic prediction in case of milk yield, fat percentage,
protein percentage and somatic cell score. They have
shown that Bayesian methods are more prone to
imputation error than GBLUP. Also, it is found that
imputations from lower density SNP panels have lower
accuracy of genomic prediction than higher density SNP
panels. Earlier in 2012, Mulder et al. haveinvestigated
the accuracy of imputation in case of low-density chip
in animals and found that imputation error rate is higher
in low-density SNP than high density SNP. Weigelet al.
(2010) also studied the effect of imputation in dairy
cattles using Bayesian least absolute selection and
shrinkage operator (LASSO) method and found that if a
suitable reference population with high-density
genotypes is available, the imputation error reduced in
a low-density chip comprising 3,000 equally spaced
SNP.In our previous work we have developed an
integrated model framework by combining two efficient
additive and non-additive methods i.e. SpAM and HSIC
LASSO, for GS to estimate GEBV (GuhaMajumdar et
al., 2019). In this article, an attempt has been made to
evaluate the performance of the integrated model
framework for GS under the influence of different levels
of imputation in genotypic data.

MATERIALS AND METHODS
Integrated GS model has been implemented on the

real dataset of wheat available at https://
www.genetics.org/content/186/2/713.supplemental. This
dataset includes trait grain yield (GY) of 599 lines for
four mega environments. However, for our convenience
we have just considered GY for first mega environment.
The genotyping of wheat lines was done using 1447
Diversity Array Technology markers generated by
Triticarte Pty. Ltd. (Canberra, Australia; http://
www.triticarte.com.au). Total 1279 number of DArT
markers has been used in this study (Crossa et al., 2010).

At first the integrated model for GS has been applied
to the real dataset of wheat in R statistical computing
platform. For that purpose, in-house R package
“GSelection” has been developed and used. The package
“GSelection” (Guha Majumdar et al., 2019) is now
available at CRAN (https://cran.r-project.org/web/
packages/GSelection/index.html). The integrated
model(Guha Majumdar et al., 2019) for estimation of
GEBV can be expressed as

where, yInt  is the predicted phenotype (GEBV) of the

integrated model, w is  , where  and  are

the error variances of models HSIC LASSO and SpAM
respectively, ysp is the predicted GEBV from Sparse
Additive Models and yHL  is the GEBVfrom HSIC
LASSO.The performance of this model is evaluated
based on three criteria, viz. error varianceof estimating
GEBV,prediction accuracy (PA) of GEBV, redundancy
rate (RED) among the selected markers.Let the error
variance of  is denoted by. The  can be expressed as

The estimation of  and can be performed by
following refitted cross validation approach of Fan
et al., 2012. PA can be defined as the correlation between
the actual phenotypic (ypred) (values (Howard et al.,
2014).

Prediction accuracy (PA) = correlation (yactual, ypred)
The RED score (Zhao et al., 2010) can be

obtained by
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where, ρk,l  is the correlation coefficient between the
k-th and l-th markers, is the number of selected markers.
A high RED score indicatesstrong correlation between
selected markers, which is not desirable because it means
many redundant markers are selected. In order to
estimate theprediction accuracy (PA), redundancy rate
(RED) and error variance, the original dataset has been
divided into training and testing datasets. 80% of the
individuals were selected randomly as training data and
remaining 20% data were kept for testing purpose.

In next step, 2% of the marker data wereremoved
randomly from the dataset. Then the sing.im function
from R package “linkim”(Xu et al., 2014) has been used
for imputation of those missing marker data. Here, we
assume Hardy-Weinberg equilibrium for all loci. So, for
standard case of 3 genotypes, i.e. heterozygous
genotypes, values are sampled from
distribution P(x=AA=0)=(1-p)^2, P(x=Aa=1)=2p
(1-p) and P(x=aa=2)=p^2, where, AA is homozygous
dominant allele, Aa is heterozygous allele and aa is the
homozygous recessive allele. In other words, the missing
values of the datasets are imputed based on observed
data proportions. Then the integrated model has been
applied on the imputed (2%) dataset using R package
“GSelection” following the same procedure as in case
of original dataset to estimate the PA, RED and error
variances. Likewise 5 and 10% of the original marker
data were eliminated respectively in the subsequent steps
and the same procedures werefollowed to compare the
parameters.

RESULTS AND DISCUSSION
The impact of different extent of imputation (i.e. 2%,

5 and 10%) has been studied on developed integrated
model by comparingestimated parameters with the actual
dataset. The comparison of the performance of actual
dataset and the imputed datasets are shown in the Fig. 1,
2 and  3.

It can be observed from Fig. 1 that in case of all the
three models (i.e. integrated model, SpAM, HSIC

LASSO)the prediction accuracy for imputed datasets
deviates from the prediction accuracy of original data
and with the increase in the imputation level the
difference is increasing. This is due to obvious reasons
that with the increase in the extent of imputation on the
dataset, the original dataset become more distant from
the imputed dataset. Another observation from Fig. 1 is
that fluctuation of the value of prediction accuracy is
highest in case of HSIC LASSO and it is minimum in
case of integrated model. This clearly indicates that the
integrated model is robust against the missing genotypes.
Also, it is observed that prediction accuracy increases
with the increase in the level of imputation. This is due
to the method of imputation that has been applied to the
dataset. The method of imputation assumes that the data
is in Hardy-Weinberg equilibrium, but in case of real
datasets it is not true always. So, the imputation method
makes the dataset close to the Hardy-Weinberg
equilibrium. That is why at the 10% level of imputation
the prediction accuracy is highest.

Guha Majumdar et al.

Fig. 1: Comparison of prediction accuracy (PA) for
integrated model, SpAM and HSIC LASSO
at different levels of imputation

Fig. 2: Comparison of redundancy rate (RED) for
integrated model, SpAM and HSIC LASSO
at different levels of imputation

In Fig. 2, it is observed that the RED score of imputed
datasets in all the three models (i.e. integrated model,
SpAM and HSIC LASSO) fluctuates from the RED score
of original data (data without imputation). Fluctuation
in case of SpAM and HSIC LASSO is very large in
comparison with the integrated model. Thus the
integrated model shows robustness against missing
genotypes in this case also by showing less deviation of
the RED score from the original. Considering the error
variance of estimating GEBV, Fig. 3 shows that the error
variance in SpAM, HSIC LASSO and integrated model
does not deviate much from the actual error variance,
although the error variance in HSIC LASSO is much
higher than the other two models.
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From the above study we can conclude that the
developed integrated model is more robust against the
imputation of missing genotypes in comparison with the
two models (i.e. SpAM and HSIC LASSO).
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